High‐Volume Processed, ITO‐Free Superstrates and Substrates for Roll‐to‐Roll Development of Organic Electronics

نویسندگان

  • Markus Hösel
  • Dechan Angmo
  • Roar R. Søndergaard
  • Gisele A. dos Reis Benatto
  • Jon E. Carlé
  • Mikkel Jørgensen
  • Frederik C. Krebs
چکیده

The fabrication of substrates and superstrates prepared by scalable roll-to-roll methods is reviewed. The substrates and superstrates that act as the flexible carrier for the processing of functional organic electronic devices are an essential component, and proposals are made about how the general availability of various forms of these materials is needed to accelerate the development of the field of organic electronics. The initial development of the replacement of indium-tin-oxide (ITO) for the flexible carrier materials is described and a description of how roll-to-roll processing development led to simplification from an initially complex make-up to higher performing materials through a more simple process is also presented. This process intensification through process simplification is viewed as a central strategy for upscaling, increasing throughput, performance, and cost reduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible low-voltage organic transistors based on a novel, high-mobility organic semiconductor

Organic thin-film transistors (TFTs) are of interest for a variety of large-area electronics applications, such as flexible active-matrix displays and conformable sensor arrays [1]. Among the challenges in the development of high-performance organic TFTs, especially on flexible polymeric substrates, is to realize organic TFTs that simultaneously provide a large field-effect mobility, a large on...

متن کامل

Computational evaluation of the homogeneity of composites processed by accumulative roll bonding (ARB)

A new computational method based on MATLAB was used to study the effect of different parameters on the homogeneity of composites produced by a severe plastic deformation technique known as accumulative roll bonding. For a higher number of passes, the degree of particle agglomeration and clustering decreased, and an appreciable homogeneity was obtained in both longitudinal and transverse directi...

متن کامل

Recent Development in ITO-free Flexible Polymer Solar Cells

Polymer solar cells have shown good prospect for development due to their advantages of low-cost, light-weight, solution processable fabrication, and mechanical flexibility. Their compatibility with the industrial roll-to-roll manufacturing process makes it superior to other kind of solar cells. Normally, indium tin oxide (ITO) is adopted as the transparent electrode in polymer solar cells, whi...

متن کامل

Corrosion Behavior of Al-2wt%Cu Alloy Processed By Accumulative Roll Bonding (ARB) Process

Accumulative roll bonding (ARB) imposes severe plastic strain on materials without changing the specimen dimensions. ARB process is mostly appropriate for practical applications because it can be performed readily by the conventional rolling process. An Al-2wt%Cu alloy was subjected to ARB process up to a strain of 4.8. Stacking of materials and conventional roll-bonding are repeated in the pro...

متن کامل

High-Speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates**

The ability of microto nanometer-scale patterning on flexible substrates can enable many new applications in the area of photonics and organic electronics. A major roadblock has remained for many practical applications of patterned nanostructures, which is the throughput of nanopattern replication and the associated cost issues. Among the emerging techniques, nanoimprint lithography (NIL) clear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014